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1.  Introduction 

The present paper is an outgrowth of comments made by the writer as an 

official discussant of the stimulating paper [4] by Milton Sobel and 

George Weiss presented at the Nonparametric Conference,—  In those sections 

of their paper in which 3-player tournaments are considered, Sobel and Weiss 

formulate their problem in such a way that only one of three decisions is 

permissible after the tournament is completed, i.e., one must choose one of 

the decisions ''Player 1 is best," "Player 2 is best," "Player 3 is best." As 

the writer pointed out at the time, this fornulaticn of the problem may perhaps 

be a reasonable one in some situations (e.g., when the tournament director is 

told that a prize must be awarded to one of the players); but it would not 

be appropriate if one permits the decision that there is no clear-cut "best" 

player in the tournament — to cope with those situations for which the 

possibility exists that (say) Player 1 is better than Player 2, Player 2 is 

Detter than Player 3, and Player 3 is better than Player 1.  (The failure 

to provide for this contingency causes some of the Sobel-Weisa sequential 

orocedures (those described in their Section 6, and which are based on the 

Hkelihood ratio statistic) to require an arbitrarily large number of 

observations to terminate sampling, whtn the true state of affairs is such 

that the probabilities that  1  beats  J,  that  J  beats  k,  and that  k 

b€ats  i  (l^J, jj*k, kti,   l,J,k"l,2,3)  all approach one.)  The formulation 

which we propose in the present paper (and which seems to us to be a very 

natural one) permits a fouith decision "no player is best," and is thus 

capable of dealing with such a possibility. 

The present paper has two main parts.  In the first part (Section 2) 

we formulate our rank1HR problem in much the same way as Sobel-Weiss (4) 

— First International Symposium on Nonparametric Techniques in Statistical 
Inference held at Indiana University, Bloomington, Indiana, June 1-6, 1969. 
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do theirs,   except that we add  the possibility of a fourth decision to their 

three decisions.    We add a probability requlreoent  tc  their probability 

requirement,  and propose a single-stage procedure wh.'ch will guarantee both 

requirements.     A numerical example is provided.    The indifference-zone 

approach employed in  [4]  and in our Section 2 is similar  In spirit to the 

approach used  earlier by the authors   ([1],   [2])   for certain classes of 

ranking problems,  although the present problem is quite different in 

structure from the ones which we considered earlier. 

In the second part   (Section  3)  we  formulate an  Identification problem 

which also parallels the one formulated by Sobel and Weiss,   except that 

(as with the ranking problem)  we add  the possibi.Uty of  a  fourth decision, 

and an additional probability requirement.    We propose a  sequential  identi- 

fication procedure which will guarantee both requirements.     Incorporated 

into our  procedure Is a certain prior  probability distribution which Is 

assumed   to be known.     The  theory  underlying the sequential  Identification 

procedures  In both the Sobel-Weiss  paper and  the present   paper   is developed 

completely   in   (2)  although  some  minor  modifications  are  necessary   to  Insure 

that our  procedure guarantees our   two  requirements. 

Our main Interest  really centers   in the formulation of   the ranking 

problem of   Section  2,   and   in  s^uen^ial  procedures which  guarantee  the 

associated  probiibility  requirement.     Our   identification  problem of 

Section  3,   and   the  sequential   procedure which guarantees   the  «spoclited 

probability  requirement   can  be regarded  as  a  first  step   toward   finding a 

sequential   procedure for  the  ranking  problem.     The  relation between such 

identification and  ranking  problem»   la  discussed   in  Section 4.     Finally, 

a more detailed  coosideration of   certain aspects  of   the  relation  between 

the  Sobel-Welas  pap«r  and  our  paper   is  given  In Section   5. 

 ^_ — 
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Sobel and Weiss proposed several Intuitively appealing sampling rules 

for their sequential Identification procedure.  The Monte Carlo sampling 

results which they obtained using these rules are very striking, and 

demonstrate that this Is a very fruitful area for future research. Their 

sampling rules can be Incorporated in our sequential identification pro- 

cedure, and we would anticipate that the performance of our procedure 

would thereby be Improved. 

; ,' 



2.    A ranking problem 

Let    p      - P{Player    1    beats Player    j}     (l^J;   l,j-l,2,3), 

(0 <_ p..  <_ 1);     the    p. .    are unknown,  and It is also assumed that we 
'1J 'U 

have no knowledge as to whether p  < 1/2 or p  > 1/2.  (We assume 

that the possibility p  - 1/2 cannot occar-r') If p  > 1/2 we say 

that Player i is better than Player j. Let w   . f be the State 

of Nature in which P b > 1/2, P d * 1/2, P f * 1/2.  There are then 8 

possible States of Nature u)13 -3 3i
,,,',ü,?i 32 31 which we 8rouP into 

sets QQ n. as in Table I; the interpretation of each (I      is also 

given in the table. 

Table I 

State of Nature 
Relation of p   to 1/2 

Interpretation of Q. 
P12 P23 p13 

no 
w12,23,31 

U)21,32.13 

> 

< 

> 

< 

< 

> 
No player Is best 

"l 

u,12.23.13 

Ul12,32,13 

> 

> 

> 

< 

> 

> 
Player 1 Is best 

"2 

ta,21,23,13 

W?l,23,31 

< 

< 

> 

> 

> 

< 
Player 2 Is best 

S 
ll)12,32.31 

'1)21,32,31 

> 

< 

< 

< 

< 

< 
Player 3 Is best 

1/ p   -  1/2  represent» the boundary regions between the  Q -reglo 

given In Table I. 

ns 
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2.1    Goal,  and probabillcy reguireaent 

The goal  (purpose of Che experiment)   la stated below aloag with an 

associated probability requirement     (R). 

Goal:    We wish to detennlae which one of  the    ft.     (1-0,1,2,3)     represente 

the true State of Nature. 

We permit four-   possible terminal decisions.    These are given. 

along with their interpretation.  In Table II. 

Table IT. 

Decision Meaning of ( lee IsIon 

drt 

No player Is best: Either p12 
> 1/2, '23 

> 1/2. P13 <   1/2, 

0 
or p12 

< 1/2. P23 
< 1/2. P13 

>  1/2. 

d 
Player 1   is best: Either p12 

> 1/2, P23 
•> 1/2. P13 

>  1/2. 

1 or p12 
> 1/2. P23 

< 1/2. P13 
>  1/2. 

d„ 
Player  2 Is best: Either p12 

N 1/2, P23 
> 1/2. P13 >  1/2. 

2 or p12 
< 1/2. P23 

> 1/2, p13 <  1/2. 

d. 
Player  3  Is best: Either p12 

> 1/2. P23 
< 1/2. p13 <  1/2. 

3 or P12 
< 1/2. P23 

< 1/2. p13 
<  1/2. 

~    It  Is also possible to consider an alternative goal which  it   "To deter- 
mine which one of  the 8    u's    represents  the true State of  Nature." 
There would  then be 8 possible terminal decisions.    Corresponding changes 
would have to be made in the probability requirement     (P). 
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Prlor to the start of play we specify four constants    {p«,  P^; pj^,  P*} 

with    1/2 < p0,  p.   <  1;   1/4  < P-,  P,  < 1    which are Incorporated into the 

following probability requirement. 

Probability requirenent    (R) 

We require that our procedure guarantee that 

c 
fi 

c 
0 

[ 

PQ - PCMaklng decision d0) > pj 

(2.1) lyi when min{pi2, p^, p3i) >  p 

or 

when min{p21, p32, P^LPQ' 

and 

P - P{Making decision d1) > P* 

(2.2) R1:    when ainlpj , plk}  >. p1 

(1-1.2,3) 

{)*i:-kM;   Jf'k;   J.k-1.2.3) 

2.2     Re^lonc of prrference and  Indifference ' 

To assist the reauer in visualizing the probability requirement, we give 

a geometric interpretation of the regions in the parameter space where 

particular decisions are preferred, and the region of indifference.  The true 

State of Nature can be represented as a point p ■ (t>,7,  P?1. Pn)  in the 

unit cube  (0 < p   <_  1),  (i < J; 1,J - 1,2,3).  For simplicity of represent- 

ation we let  Y.J " ^(p.. - 1/2), and transform the parameter space into the 

cube  (-1 < Y  < 1),  (1 < J. l.J - 1,2,3)  which Is depicted In Figure 1. 
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Then ^) in Figure 1 Is the rt^lPD in the parameter space of the 'U 
where decision d (i - 0,1,2,3) is preferred. The region not Included 

In the region of preference for any d. is referred to as the region of 

indifference. 

2.3 Single-stage procedure 

There nay be many statistical procedures (single-stage, two-stage, 

sequential) which will guarantee the probability requirement (R) of 

Section 2.1. He describe here a simple single-stage one. 

SINGLE-STAGE RANKING PROCEDURE 

Conduct a c-cycle tournament, a cycle consisting of 3 games 

{Player 1 vs. Player 2, Player 2 vs. Player 3, Player 1 vs. Player 3} 

where c is a predetermined number, computed as described in Section 2.4. 

Calculate p12, p   p   where p..  - (proportion of gomes In which 

| 
Player i beat Player J  in the c-cycle tournament). Compare each of 

these p.  to 1/2, and make the obvious terminal decision, e.g., make 

decision d0 if p12 > 1/2, p23 > 1/2, p13 < 1/2 or if p12 < 1/2, 

» 
P23 < 1/2, p.- > 1/2. Randomize between decisions If ties occur, e.g., 

randomise between decisions d- and d  with probability one-half if 

p.- - 1/2, p__ > 1/2, P-,., < 1/2, ties cannot occur if c Is odd. 

2.4 Determination of number of cycles (c) 

Our problem now is to determine the smallest vaiue 0f c that will 

guarantee R.  For simplicity we consider only odd  c  (and thereby avoid the 

necessity of discussing ties).  Denoting the cumulative binomial probability 

«ta 
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Pr{X > x | n,p)  = 
n-y 

y  ,"• ,, py (1-p)""3' by B(x|n,p),  we have that 
y.x y!(n-y)! 

(2.3)    P0 - B(^|c.p12) • B(^i c,P23) ' B(~2- C.Pßj^) 

+ l\  -  B( 
c+1 

c,p12)][l - B(^ c,P23)][l - B(^ C.PJJ^)] , 

and  for  jjii,   k/l,  j^k;   j,k-l,2,3    we  have 

(2.4) F. • B( 2 C'PlJ) B( 
c+1 

c.Plk) (1=1,2,3) 

■ 

: 

Since  pfi > 1/2 we have that  P0  Is minimized, subject to minip,-, Py'i'   ^31^ 

> P0,  when  p12 - p23 - p31 = p0, or subject to max{p12, p23, p^} 4 1 - PQ 

(which is equivalent to Jiin{p?1 , P32> PIT^ ?. Pn^ when p,2 " P23 " P31 " 1 ~ PQ! 

the same value of P  is attained when PIT " P23 " P31 - Pn a8 w^en 

p,? « PJT " P31 " 1 - pn.  Also,  P. (1=1,2,3)  is minimized, subject to 

min'Pi.. PAU^   
>   Pi« when p.. » p,. ■ p..  We refer to the configurations 

p,2 = P2^ " P31 " Pn an^ Pi? " P23 ' Pll " ^ - Po as l^381^ favorable (LF) 

for  R0 wfen rain{p121 p23, p31} > p0 or when max{p12, p23, p31} <. 1 - PQ, 

respectively, and the configurations  PJ* ' Pik ' Pi  as ^     ^or ^l  when 

tn^n'P<4> P^v^ i Pi-  Thus if we choose cn and  c.  as the smallest (odd) 

Integers  c  which satisfy 

(2.5) B3(^ c,?Q)   + (1 - B^1- c.P0)l  >. P 0 

m**t 
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i; 

and 

(2.6)    B^jc.p^  > pj . 

respectively, we see that 

(2.7)    c • max{c0, c.} 

is the smallest (odd) Integer which guarantees R. 

2.5 Numerical example 

Suppose that the experimenter sets up the specification p - 0.60, 

p* - 0.75; pj - 0.65, P* - 0.90.  We find using  [4]  that 

[B(22|43,0.60)l3 + [1 - B(22|43.0.60) ]3 - (0.908676)3 + (0.091324)3 - 

0.751048 while [B(21|41,0.60)]3 + [1 - B(21|41,0.60)]3 - (0.903483)3 + 

i: 
(0.096517)3 - 0.73840;  hence. c0 - 43.  Also,  [B(15|29,0.65))

2 

(0.952363)2 - 0.90700 while [B(14|27,0.65))2 = (0.946377)2 - 0.89563, 

hence c. - 29.  Thus  c ■ max{43,29} ■ 43.  But when c = 43 we alco 

obtain  [r(22|43,0.65))2 - (0.978598)2 - 0.95765, (B(22|43.0.64)]2 - 

(0.970264)2 - 0.94141, (B(22|43,0.63)j2 - (0.9595I0)2 - 0.92066, 

(B(22|43,0.62)]2 - (0.945923)2 - 0.89477.  Tims, for no extra cost in 

terms of sampling, i.e., using c • 43.  the experimenter could have set 

up and guaranteed stricter probability requirements R with specifications 

r such as {p0, Pj; p1,  P*} - {0.60. 0.75; 0.65, 0.95765}. ..., 

L 
{0.60, 0.75; 0.63, 0.92066}. 

i 
«— 
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3.  An Identification problem 

Let p..  be defined as in Section 2. We assume that p0, p., 6 are 

three given probabilities with 1/2 < p , p., 6^1,  and that there are 

8 possible States of Nature u)° 23 31' •"» '"^l 32 31 which rePresent 

certain possible pairings of the triple  (P^» Pjo» Pii) vith  the prob- 

abilities p , p , 9.  These pairings are given In Table III, as are the 

groupings of the u 's  Into sets ß , .,., Q..  We further assume a known 

prior probability ^, C(w0) ^ 0 ( [  4(w0) - 1)  associated with each 

one of the 8 States of Nature in H0-(I Si°.  For our problem it seems reasonable 
1-0 

because of the symmetries, to set C(w0) - (l-3A)/2 foi each of the 2 u)0,8 

In n°, and Uu)0) - A/2 for each of the 6 o^'s in n°\JQ°\jn°.    Then 

C0 - anj) - 1-3A and ^ - (.01°)  - A  (1 - 1.2,3). 

1 
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Table III 

Pairings of  (p12, P23, p31) with p0, P1,  6 

oLrtLt Ui. natuie 
p12 P23 P31 

*°0 

o 
"U.21,31 

po P0 P0 

W21.32.13 
l~*o ^"O 

l-po 

nI 
"12.23.13 pl 6 1-P, 

o 
w12.32.13 Pl 

1 - 9 1-P! 

°l "21.23.31 1-P, Pl 
6 

U)21.23.13 1-P, Pl 
1-9 

"3 

,1,i2.32.31 
9 l-pl Pl 

"21,32.31 
1-6 l-P1 Pl 

3.1 Goal, and probability retjuiremcnt 

The goal is stated below along with an associated probability require- 

ment  (R0) . 

C^al: We wish to determine which one of the ß  (i ■ 0,1,2,3)  represents 

the true State of Nature. 

We permit four possible terminal decisions.  These are given, along 

with their interpretation, in Table IV. 

I I 
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Table IV 

Decision Meaning of decision 

d 
No player la beat : Either p12 p23 P: 11 •po' 

0 
or p12 P23 P- 11 

■ 1 po- 

dl 

Player 1 19 best : Either p12 p13 p] > p23 - e. 

or p12 P13 p] P23 ■ i - e. 

Player 2 is best : Either p21 P?3 Pl p31 
- e. 

H 
2 or P21 p23 p] p31 

■ i - e. 

Player 3 is best : Either P1? p31 pl pl? 
■ e. 

d. 
3 or P32 P31 p] » p12 * 

i - e. 

Prior to  the start  of  play we specify  two constants     (P«  ,  P,)    with 

1/4 < Pn  , P* < 1    which are incorporated  into the following probability 

requirement. 

Probability requirement     (R  ): 

We require that  our procedure guarantee  that 

(3.1)      R o • P° - P{Making decision d0 when n° is true} >, P* 

and 

(3.2)       R°   : p° -  P(Making decision    A^     when    n°     is  true)   >  P* 

(1  -  1.2,3) 
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(The notation of  (3.1)  and  (3.2)   Is Justified by the fact  that  for simplicity 

we shall consider only procedures whose symmetry insures that for each    1 

the probability expressions of  (3.1)  and  (3.2)  are the same for both members 

of    n°     (i - 0,1,2,3).)    It should be noted that  in this problem we ate 

deciding among four composite hypotheses  (each one consisting of  two 

completely specified States of  Nature)  with specified lower bounds on the 

probability of a correct decision for  each of  these States of Nature. 

3.2    Sequential procedure 

In this section we shall describe a sequential identification procedure 

which will guarantee the probability requirement    (R0).    The theory under- 

lying this development is derived in  [2]. 

Our sequential procedure is based on 8 likelihoods,   each one of which 

is associated with a different one of  the eight States of  Nature of Table 

III.     These are defined in  (3.3),   below.     In making these definitions we 

assume that  the  tournament  is run in cycles   (as defined  in Section 2.3). 

However,   this assumption of  cyclic play  is made only for  con-- 

venience,   and  the same results would  hold  for more general  symmetrical 

playing rules.     Let    s^ J'  -  s (say)   denote the number of  "succesaes" 

for Player  1 when he plays Player  j,   i.e.,   the number of  times  that     i 

beats    J,     in their first    m    games.     We  then define the 8  likelihoods 

12 21     23 32  .31 .13 
8 

L(u,23.n, . Pf a-pZ-pfa-p/"^"»V 

12     23     31 21    32A 13 s    +s    -i-s        ,.        .s    +«    +8 
PQ (1-p0) 

12  21       23 32      31  13 
(3.3)    L(21.32.13) . (1.po)s  p8   (1_po)s p8  ^s  p8 

21  32^ 13       12 23 31 
s +s -»-s   /i „ xB +9 +8 

Pn (1-Pn> 

• 

\W 
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/,^ oa  1^ 12 21    »23 32 31      13 

^ ' '    - pi (1-PI)S   9   (1-e)8   v-vj   P! 

/io  -JO  -.^ I2 21 23      32 31      13 ,(12,32,13) s       ,,       .s       ,,   .v8       .8      ,,      xs        s 
Lm 

pl  ^-Pi^    (1-9)   e   (i-Pi)   Pi 

etc. , 

and the 4 likelihood sums 

L  (d j  . L(12,23.31) + j(21,32,13) 
m    0 m 

(3.4) 

16 

L   (d,)  . L(12.23.13) +L(12.32.13) 
m     1 m m 

L  (dj  - L(21.23,31)+L(21,23,13) 
n>     2 m m 

L   (d,)  - i/12.32.31) + L(21.32,31) 
m    3 m m 

The a posteriori probability after cycle    m    that    d      is  the correct 

decision given    C     and     s    -  (s(12),   8(23),   s(31))     is 
tn tn tn n 

(3.5) P Jm 
b   L

n
(di) 

k-o   k   m   k 

(J  -  0,1.2,3) 

The stopping and   terminal decision rules of our  sequential procedure are 

based on the    P of   (3.5)  and on a constant     P*(l/4< P*  <  1)     which is 

chosen to guarantee (3.1) and (3.2). As stated in the prellBinarles of 

Section 3, we shall let C0 - 1 - 3A and ^ - A (i - 1,2.3) where A 

Is assumed   to  be  known. 
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SEQUENTIAL IDENTIFICATION PROCEDURE 

Sampling rule:    Run the tournament In cycles. 

Stopping rule:    Stop  the toumaaent at the first cycle    n    for which 

(3.6) max    P°      > P* 
0<1<3    ** 

where 

,P. 

' l 

for X   »  0 

(3.7) P*  -   / max{pj +   3X(1-Pj),   1  -  3A(l-pJ)} for     0  <   X   <   1/3 

for X   -   1/3. 

i: 

f] 

1! 

i; 

i. 

i: 

i; 

ü 

Terminal decision rule:     Make the decision which has associated with it  the 

largest of  the    P.   .     If,   because of equalities among  the    .'     ,     several 
Jn Jn 

decisions are associated with the same maximum value,   then select one 

such decision by a random device which assigns  the same probability  to 

each. 

The  terminal decision  rule can be stated equivalently as  follows. 

Letting    d^     be the decision    d.     for which    i  (d.)   -    max    L   (d.),    we: 

Choose    d0    if    Ln(d0)  > ^ ^(dj)   . 

(3.8) Choose    dj     if     Ln(d0)   < -^ L^)   . 

Randomize among  ties. 

In the next  section we show   -hy    P*    of   (3.7)   guarantees   (3.1)  and   (3.2) 
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3.3    DetenninatioD of  stopping constant     (P*) 

We first remark that  in general  it  is difficult  to determine stopping 

constants which not only guarantee probability requirements  such as    R  , 

but also do  30 in some optimal sense.    This ii particularly  the case for 

nonsy metric  situations when the number of terminal decisions which the 

statistician is permitted  to make is  greater  than two  (which  is our 

situation).     In fact almost all of   the theory contained in   [2] which deals 

with sequential  identification procedures is concerned with  symmetric 

situations.     However,   it  is possible  to make use of  certain results and 

remarks in   [2]   (specifically those  in Section 3.7(c),  pp.   51-52)  to obtain 

solutions  for certain particular problems  Involving nonsymmetric  situations. 

No claim is made that  these are the  best  possible solution«   (which they 

certainly are not),  but only that  these solutions guarantee   (3.1)  and  (3.2). 

It  follows  from results proved   in  [2]   (specifically from Lemma 3.1.1 

and Corollary 3.1.1 — see also equation   (3.7.2))   that our  sequential  Identi- 

fication procedure of Section 3.2 using    P*(l/4 <?*<!)     on the r.h.s.   of 

(3.6)  guarantees 

(3.8) 3X  P0 +  (1 -  3X)P°    >    P* 

: 

] 

where    P       and    ?i m ^j' P3    are defined  in  (3.1)   and  (3.2),   respectively. 

From  (3.8)   it  follows,   by setting  first     P.     and then    P.     equal  to one, 

that 

(3.9) '0    i       (P*  -   3X)/(1   -   3A) f or 0 <   X   <  1/3 
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'l    t    (P* -  1  + 3X)/3A      for       0 <  X ^ 1/3. 

Since for fixed    X     the r.h.s.   of both   (3.9)  and   (3.10) ar«  increasing 

functions of P*    which approach      one as    P*    approaches one,   it  follows  that 

we can choose    P*    sufficiently large that  the  r.h.s.   of  (3.9)  is    > P*    and 

the  r.h.s.  of   (3.10)   is     > P?   .     If we  let    P"    denote   the smallest value of 

P*    which accomplishes  this dual objective,  we see that    P*    la given by   (3.7) 

3.4     Numerical  example 

In Table V wr  givo  the values of     P*    associated  with the specification 

P* -  0.75.  ?* - 0.90    for selected valueu of    C     -  X     (i - 1,2,3). 
0 1 1 

Table V 

X P* 
P*  -   3X 

1-3X 
r* - i + 3x 

3X 

1/3 0.90   0.90 

0.33 0.9975 0.75 0.9975' 

0.30 0.975 0.75 0.9722 

5/21 13/14 0.75 0.90 

0.20 0.94 0.85 0.90 

0.10 0.97 0.9571 0.90 

0.01 0.997 0.9969 0.90 

0 0.75 0.75   
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We note  that when    P*    is considered as a function of    X    for fixed 

{P*  ,  P*},     it  ia discontinuous at     X - 0    and    X - 1/3,  e.g.,    P* -*■ 1    as 

X •♦ 1/3,     but    P* ■ 0.90    when    X - 1/3.    However,   this  is to be expected: 

As    x  -► 1/3,    the a priori probability    £0    associated with    Q°    approaches 

zero.     But  the procedure is still required to make the decision   d.    at 

least   75 percent of  the time when    n      occurs  (however infrequently),  as well 

as  to make  the decision    d      at  least 90 percent of  the time when   Ü.    occurs 

(1 "  1,2,3).    This will  In general require many cycles  to terminate the 

tournament   (and hence the expected  number of cycles  to  terminate the 

experiment will be very  large) .   But when    X ■ 1/3,  fl.    cannot occur,  and 

the procedure Is only required   to decide among    U. ,  Q„,   Q.    and make the 

decision    d      at least 90 percent of  the time when    ß.     occurs     (1 - 1,2,3). 

A similar analysis holds for     X  •♦ 0    and    X -  0. 

In Table V the minimum value of    P*,    namely    13/14 - 0.9286,    occurs 

when     X  ■  5/21.     In general  this minimum value occurs when 

X  - I -   (l-p*)/3(2-P*-P*)     and   is associated with    P* -   (P* -   3X)/(1-3X) 

and    P* -   (p* - 1 + 3X)/3X. 

We note  that  for    X  - 0.33     (say),   the experimenter  could  set up  the 

stricter  specification    {P* -  0.75.   P* ■ 0.9975},    and  he can guarantee it 

with  the  same amount of  sampling as   is required  by the present  specification; 

such a  tightening of  the specification is possible for all     X-values 

(0 <  X   <  1/3)     except     X - 5/21. 

A  non-Bayeslan might  regard     X     (0 4 X ^ 1/3)     as  a  constant,  at  his 

disposal,   to  be set   In such a  way  as   to cause   the  procedure   to  have certain 

properties which he deems desirable.     Thus he might  set     X  •  X,     and still 

be  assured   that   the procedure will  guarantee   (3.1)   and   (3.2). 
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4.    Relation betweei the ranking and  identification prftbL 

It was demonstrated   in  [2]  that  in many  situations of  practical  interest, 

appropriate sequential procedures are more efficient  than ulr "le-stage pro- 

cedures which guarantee the same probability  requirements,   i.e.,   the sequential 

procedures often guarantee  these requirements with a smaller expected  number 

of observations.     With this  fact  in mind,  we would  like for  the problem of 

Section 2 to find a  sequential ranking procedure,   to replace the single-stage 

ranking procedure of  that   section,  which will guarantee the probability 

requirement   (2.1)  and   (2.2).     As a first  step  in  this direction,  we set  up an 

artificial  identification problem,  and displayed  in Section 3.2 a sequential 

identification procedure which will guarantee  the associated probability 

requirement   (3.1)  and   (3.2)   (which corresponds  to  protecting against   the 

least favorable configuration of  (2.1)  and   (2.2)  with the addition of   the 

nuisance parameter     8).   (Usually,   if  one cannot  solve the identification 

problem,   there is  little hope of solving  the  corresponding ranking  problem.) 

The next  logical step  in the research process  would  be to try  to produce a 

sequential  ranking  procedure which reduces  to  the  sequential  identification 

procedure when the parameters are in the least  favorable configuration,   and 

which for an arbitrary coi figuration of   the parameters guarantees   the  prob- 

ability requirement   (2.1)   and  (2.2).     (This   is  the  same general approach as 

was used  in   [2].     See,   in particular.   Sections  3.6 aud 6.1.)     However,   we wish 

to emphasize that we have made no attempt  in the  present paper  to produce 

such a sequential  ranking procedure,   but  rather  leave that  as a  topic   for 

future research. 

One would  naturally  be very much  Interested   in  the efficiency   (measured 

in terms of  expected  number of cycles  to  terminate  the tournament)  of  our 

sequential  identii Ication  procedure of Section 3.2  relative no  that  of  a 

Mill 
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single-stage Identification procedure which guarantees   (3.1)  and  (3.2). 

(Note that  the determination of  the    c    of   (2.7)  doep  not   involve knowledge 

of  the value of  the  nuisance parameter    6,    while  the use of  the sequential 

identification procedure of  Section 3.2 does involve such knowledge.)    However, 

we remind  the reader  that  the  sequential  identification pr-icedure of Section 

3,2 which uses the    P*    of   (3.7)   is very contervative for    0 < X < 1/3    because 

of  the crude inequalities  (3.9)  and  (3.10)  used in deriving it,  i.e.,  the 

procedure will actually achieve probabilities of a correct decision under 

il       (i  - 0,1,2,3)    which are  substantially higher  than the specified values 

P0    and    P*.    Thus it may be somewhat misleading to compare this procedure with 

a  single-stage identification procedure which is  set up  Co guarantee the 

same probability requirementc   (3.1)   and   (3.2),  unless some adjustment  is 

made  for  "excess."     (See   (2),   Section 3.7(d)  and  (e).) 

i 

5.   Relation between the Sobel-Weiss paper and  the present  paper 

The Sobel-Weiss paper   [4]  describes selection procedures for tournaments 

with  2 or  3 players.     Their  formulation of  the problem for  tournaments with 

3 players  is analogous  to ours  except  that  they never permit  the decision    d., 

and  hence they consider only  the  probability requirements     R.     of   (2.2)  and 

R      of   (3.2).     Ideally they would  like all of  their sequential procedures for 

tournaments with 3 players  to guarantee our probability  requirement    R.     of 

(2.2)   (their requirement   (1.1)).     However,  at  this  point   in  the development 

of  the  theory,  none of  their  procedures has been proved  to do so. 

Thi y   hwc   proved   that   their   procedure 

R       does   so  if  the value ot   the  nuisance parameter    9    ■  p  ,      in our   (2.2)   is 

known.     Their procedure    R       is  shown to guarantee our  probability requirement 

R°    of   (3.2).    Their procedure ^     is intended  to guarantee    R?    of  (3.2),   it 

is   studied  using Monte Carlo  eatnpllng,   Kut   no  analytic   results  are obtained. 

■MMVK^MMrtAfhi 
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The Sobel-Wel89 procedures R^^  9^^^,   R^, R-c, and K^^    guarantee 

our R0 of (3.2); they use the samt; stopping rule and terminal decision 

rule as does our sequential identification procedure of Section 3.2 when we 

let X - 1/3 in our procedure, but they use different sampling rules. 

(Their procedure R^o  18 identical to our procedure when we let  X ■ 1/3.) 

Their sampling rules could be used with our procedure of Section 3.2 for 

arbitrary \     (0 ^ A ^ 1/3)  to guarantee (3.1) and (3,2) simply by redefining 

the L 's of (3.3) to read L(
ab'cd.ef)    since In general we will have 
(mab'mcd'mef) 

8U )     8(cd)     B(ef)  wlt.h    m4B4m xhe improvements  in    N    values 
m . m   , m  , ab        cd ef ^ ab cd ef 

(see the tables  in   [5]  summarizing the results of Monte Carlo sampling 

experiments)  obtained using their sampling  rules may very well  carry over to 

our procedure for arbitrary    X     (0 <  X ^ 1/3),    and this possibility  is 

certainly worth  investigating further. 

It should  be pointed out  that a major  drawback of  the Sobel-Weiss 

3-declsion formulation is that     E{n)    will  become arbitrarily  large for  their 

five procedures     R^.   R^.  R^.  R^,     and     R^    if    min{p12,   p^.   p^} - 1 

or    mln{p22,  P13.   Pi?) "*■ ^    (since this means that    d0    is the true State 

of Nature).     However,   our procedure will   tend  to  terminate early  in either 

of these situations,   and make the decision    d   . 

I ) 

6.     Directions of  future research 

It  would  be  desirable  to  continue   the  present  Investigation  to   find 

sequential  ranking procedures which can be proved analytically  to  guarantee 

the probability   requirements   (2.1)   and   (2,2),   and which  employ   some  of   the 

sampling rules   (or variations  thereof)   studied  by Sobel and Weiss. 

1, 

M 
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Research should be devoted to finding improved values of the stopping 

constant    P*    of  (3.7)   in order to cut down on the overprotection.     It 

would also be interesting to generalize this approach to tournaments 

Involving more than 3 players. 
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M.   Sobel   and  G.   Weiss  have  proposed   sequential   selection   (identification  and 
ranking) procedures   for  3-player  tournaments.      In  their  formulation  of  the problem 
they  permit   only  one  of the  three   terminal   decisions:     "Player   i   is   'best.'"   (i=l,2,3; 

In   the   formulation described   in   the  present  paper,   a   fourth  decision   is  also 
permitted,   namely,   "There   is   no  clear-cut   'best'   player   in   the   tournament"-- to  cope 
with   those   situations   for which   the  possibility exists   that   (say)   Player  1   is  better 
than  Player   2,   PI'./er  2  is  better  than   Player  3,   and  Plaver  3   is   better  than  Player   1. 
For  this   4-decisi^n   formulation,   a  single-stage  ranking  procedure   is   proposed  which 
guarantees   that   certain  requirements  on   the  probability  of a  correct   selection will 
be  achieved   (no  matter which  one  of  the   four  States of Nature   is   the   true  one);   for 
this   same   formulation,   a  sequential   identification procedure   is  proposed  which 
guarantees   that   certain more  restrictive   requirements  on  the  probability of a  correct 
selection  will   be  achieved.     Our  sequential   identification  procedure  can be  regarded 
as a generalization of one of the  sequent is 1   procedures proposed  by Sobel  and Weiss. 

The  relationship between  certain   aspects  of the  Sobel-Weiss  paper  and  the 
present   paper   is  discussed   in  some detail.     Directions  of  future  research  are 
proposed. 
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